T

Lý thuyết Hàm số bậc hai SGK Toán 10 – CTST

Câu hỏi: Lý thuyết Hàm số bậc hai SGK Toán 10 – CTST
1. Hàm số bậc hai
+ Định nghĩa:
Hàm số bậc hai biến x là hàm số cho bởi công thức dạng \(y = f(x) = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R};a \ne 0.\)
+ Tập xác định: \(\mathbb{R}\)
2. Đồ thị hàm số bậc hai
+) Đồ thị hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) \((a \ne 0)\) là một parabol (P):
- Đỉnh \(S\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)
- Trục đối xứng: đường thẳng \(x = - \frac{b}{{2a}}\)
- Bề lõm: quay lên trên nếu \(a > 0\), quay xuống dưới nếu \(a < 0\)
- Cắt Oy tại điểm \((0;c)\)
49.png

* Chú ý: Nếu PT \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1},{x_2}\) thì đồ thị hàm số \(y = a{x^2} + bx + c\) cắt trục hoành tại 2 điểm có hoành độ lần lượt là 2 nghiệm này.
+) Vẽ đồ thị
1) Xác định đỉnh \(S\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)
2) Vẽ trục đối xứng d: \(x = - \frac{b}{{2a}}\)
3) Tìm tọa độ giao điểm của đồ thị với trục tung (A(0;c)), trục hoành (nếu có).
Xác định \(B\left( {\frac{{ - b}}{a};c} \right)\) (là điểm đối xứng với A qua d)
4) Vẽ parabol đỉnh S, trục đối xứng d, đi qua các điểm tìm được.
3. Sự biến thiên của hàm số bậc hai
+) Bảng biến thiên
50.png

+) Kết luận:

\(a > 0\)
\(a < 0\)
Trên khoảng \(\left( { - \infty ;\frac{{ - b}}{{2a}}} \right)\)
Hàm số nghịch biến
Hàm số đồng biến
Trên khoảng \(\left( {\frac{{ - b}}{{2a}}; + \infty } \right)\)
Hàm số đồng biến
Hàm số nghịch biến
GTLN hoặc GTNN
Đạt GTNN bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(x = \frac{{ - b}}{{2a}}\)
Đạt GTLN bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(x = \frac{{ - b}}{{2a}}\)
Tập giá trị
\(T = \left[ {\left. {\frac{{ - \Delta }}{{4a}}; + \infty } \right)} \right.\)
\(T = \left( {\left. { - \infty ;\frac{{ - \Delta }}{{4a}}} \right]} \right.\)
4. Ứng dụng của hàm số bậc hai
+) Tầm bay cao và tầm bay xa
Chọn điểm \((0;{y_0})\) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời mặt vợt là:
\(y = \frac{{ - g.{x^2}}}{{2.{v_0}^2.{{\cos }^2}\alpha }} + \tan \alpha .x + {y_0}\)
Trong đó:
\(g\) là giá tốc trọng trường ( \( \approx 9,8 m/{s^2}\))
\(\alpha \) là góc phát cầu (so với phương ngang của mặt đất)
\({v_0}\) là vận tốc ban đầu của cầu
\({y_0}\) là khoảng cách từ vị trí phát cầu đến mặt đất
Quỹ đạo chuyển động của cầu lông là một parabol.
51.png

- Vị trí cao nhất tại đỉnh parabol, gọi là tầm bay cao;
- Khoảng cách từ nơi đứng phát cầu đến điểm cham đất, gọi là tầm bay xa.
+) Bài toán ứng dụng
Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biến phía sân đối phương thì lần phát cầu được xem là hợp lệ.
52.png
 

Quảng cáo

Back
Top